The C.R.O.S.S. Unit was developed for shops having machine tools with individual coolant reservoirs.

C.R.O.S.S. is used in conjunction with a portable sump cleaner/filter that is used on a regular basis to remove contaminated coolant and all swarf, chips and sludge from the coolant reservoir.

The C.R.O.S.S. Unit is furnished in startup condition, needing only electrical hook up and water supply for the coolant proportioner.

The C.R.O.S.S. is manufactured from mild coated steel and other high-grade material suited for industrial applications.

Economical, Field Proven Performance
- Removes tramp oil to less than \(\frac{1}{4} \) of 1% by volume
- Removes suspended solids to acceptable levels
- Coolant proportioner replaces fluid lost due to evaporation or spillage
- Separated oils can be sold or reused
- Standard systems process up to 900 gallons per hour
- Automatic operation
- Compact, self contained

Total Effectiveness
- Reduces waste disposal cost by 85% to 90%
- Reduces new fluid purchases by 45% to 80%
- System pay back is typically 3 to 9 months
- User friendly

EdjeTech

Increasing Production Through Waste Minimization

Edjean Technical Services, Inc.
246 US HWY 224, STE A
Sullivan, OH 44880

Ph. (800) 242-0525
Fax (877) 806-2400
E-mail: sales@edjetech.com
Web site: www.edjetech.com
EdjeTech C.R.O.S.S.
SYSTEM SPECIFICATIONS

System Features
- Carbon Steel Construction
- Chemical Resistant Paint
- Electric:
 - Single Phase on 250 & 450
 - Three Phase on 850 and up
- Proportioner: Piston Style
- Polypropylene Coalescing Media

Options
- Pre filtration
- Clean Coolant Return System
- Electronic Refractometer

System Specifications

<table>
<thead>
<tr>
<th>System</th>
<th>Flow Rate (GPM)</th>
<th>Dirty Tank (Gallons)</th>
<th>Clean Tank (Gallons)</th>
<th>A (inches) (cm)</th>
<th>B (inches) (cm)</th>
<th>C (inches) (cm)</th>
<th>D (inches) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2</td>
<td>130</td>
<td>120</td>
<td>60</td>
<td>42</td>
<td>39</td>
<td>36</td>
</tr>
<tr>
<td>450</td>
<td>5</td>
<td>250</td>
<td>200</td>
<td>72</td>
<td>48</td>
<td>49</td>
<td>46</td>
</tr>
<tr>
<td>850</td>
<td>10</td>
<td>450</td>
<td>400</td>
<td>120</td>
<td>48</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>1200</td>
<td>15</td>
<td>600</td>
<td>600</td>
<td>132</td>
<td>60</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>2200</td>
<td>25</td>
<td>1100</td>
<td>1100</td>
<td>168</td>
<td>96</td>
<td>64</td>
<td>58</td>
</tr>
</tbody>
</table>

Diagram and Table Data

- System Flow Rate and Dimensions
- System Specifications Table
- System Diagram with notations:
 - 2" DIA COUPLING
 - BOTTOM DRAIN
 - TOSS DRAIN 3/4" DIA

Notes:
- Dimensions A, B, C, D are given in inches and centimeters.